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Abstract

This contribution investigates an important aspect of
the design of particle accelerators, i.e., the behaviour
of the geometric shunt impedance, R/Q, as a function
of the beam pipe length for eigenmodes formed within
the beam pipes connecting the cavities in a module.
The study employs both analytical and numerical ap-
proaches to characterise these dependencies, provid-
ing an understanding of how R/Q varies with the ge-
ometric parameters. Analytical formulas are derived
and validated by comparison with numerical solutions.
The results highlight optimal performance - minimised
impedance - for certain beam pipe length-to-radius ra-
tios.

1 Introduction

Accelerating cavities are critical components of parti-
cle accelerators designed to increase the velocity and
energy of charged particles. These cavities are typi-
cally arranged in modules, interconnected by cylindri-
cal waveguides known as beam pipes. Beam pipes
can support the formation of longitudinal and trans-
verse modes with high impedance, which can com-
promise beam stability if not sufficiently damped.

The impedance of these modes is determined through
eigenmode analysis as the product of the geometric
shunt impedance (R/Q) and the quality factor (Q).
Couplers can be used to reduce @, while R/Q is
purely a function of the component’s geometry and
can be minimised by optimising its geometric parame-
ters.

This study examines how the dimensions of the beam
pipes influence R/Q for a cylindrical waveguide as a
precursor to analysing beam pipes coupled to cavities.
The focus is on transverse magnetic (TM) monopole
modes, with particular attention to the TMy;; mode,
which is illustrated in Fig.[T]

2 Analytical formalism

As a precursor to analysing beam pipes of any de-
sired shape coupled to cavities, a general solution is
derived to describe the relationship between the R/Q
of a cavity eigenmode and the length-to-radius ratio
(L/R) of a cylindrical waveguide. Figure [2|illustrates

Figure 1: Electric field distribution of a TMy1; mode
trapped in the beam pipe connecting two single-cell
cavities.

the cylindrical waveguide mode corresponding to the
mode shown in Fig. [1]

Figure 2: Electric field distribution of a TMy;; mode of
a cylindrical waveguide.

Using cylindrical coordinates, the R/Q for an eigen-
mode is defined as [1]
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where R is the shunt impedance, Q@ is the quality fac-
tor, V(p = 0) is the central axis voltage, w is the an-
gular frequency and U is the energy of the mode. The
accelerating voltage and energy are calculated using
L
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respectively. E.(p, ¢) represents the z-component of
the phasor electric field vector E, while H denotes the
phasor magnetic field vector, L denotes total length,
and k, is the z propagation constant. The expres-
sion for the longitudinal component of the electric field
for transverse magnetic (TM) modes in a cylindrical
waveguide is derived as shown in [2, p. 128]. Only
relevant quantities are repeated here.

E, = Acos(me) cos(k,z)Jm (kemnp) (4a)
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where ¢ and p are the permittivity and permeability
of the medium, A is an arbitrary amplitude constant,
m, n, and p are the number of field variations in the
azimuthal ¢, radial p and longitudinal =z axes, respec-
tively, k... the cutoff frequency, and J,, a Bessel
function of the m!™ kind.

Substituting in (2) we get,

L -
Vi(p =0) = Eg cos(me) / cos(k,2)Jpm (0)e7“dz.

0
(5)
For TM modes, H, = 0. Therefore,
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Substituting and in (6), we get
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Using the Bessel’s integral identity in (7),
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where py,, := kcmn R for radius R, results in,

K2R?

U= 7mLE2 T2 (Dran)- (9)
2 WLTL
where
1 iftm=0,p=0
1=<¢2 ifm=0,p>00rp=0,m>0 (10)

3 ifm,p>0

From (2) and (9), R/Q is calculated as,

R 2'72p},.nL cos(me)Jin (0)(Tp + Tr)?
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where n = u/e is the characteristic impedance of the

propagation medium and x := R, /k2 ,,, + k2.

For TMy,,, modes, m =0,

(11)
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where
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From ({2), it is observed that R/Q is minimum (=0)
only when Ty, + Tr = 0. Substituting the definitions
for T, and T from and using some trigonometric
identities, we arrive at

. (kL pm . (DT kLY
sin <R> cos (?> + sin (7) cos (R) =0. (14)
If pis odd,
L T 5 5.
B , n?—p%:ne{l,3,5,..}. (15)
If pis even,
é = p:m (2n)?2 —p?:n€{1,2,3,4,...}. (16)
The result shows that R/Q is minimised (=0) for dis-

crete L/R ratios. The optimal L/R ratios for the beam
pipes can be calculated for various TMy,,, modes us-

ing equations and (76).

3 Validation

To validate the results from the analytical formal-
ism, a cylindrical cavity is constructed in CST Stu-
dio Suite® [3] and simulated for different L/R ratios.
The analytical and numerical results, shown in Fig. 3]
demonstrate good agreement, thereby validating the
derived formula.
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Figure 3: Comparison of analytical and numerical so-
lutions for relationship between L/R vs R/Q for R =
156 mm and 200 mm for the TMg;; mode.

4 Conclusion and outlook

This study shows that for specific beam pipe length-
to-radius L/R ratios, the geometric shunt impedance
R/Q of a cylindrical waveguide is minimised. The re-
sult could be leveraged to carefully define the cav-
ity module length to reduce the adverse effect of the
beam pipe modes trapped between cavities in a mod-
ule. The next step is comparing the analytic solution
for the cylindrical waveguide to numerical solutions for
a beam pipe between cavities.
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